Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Emerg Microbes Infect ; 11(1): 2800-2807, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2062777

ABSTRACT

An outbreak of COVID-19 caused by the SARS-CoV-2 Omicron BA.2 sublineage occurred in Shanghai, China from February 26 to June 30, 2022. We use official reported data retrieved from Shanghai municipal Health Commissions to estimate the incidence of infections, severe/critical infections, and deaths to assess the disease burden. By adjusting for right censoring and RT-PCR sensitivity, we provide estimates of clinical severity, including the infection fatality ratio, symptomatic case fatality ratio, and risk of developing severe/critical disease upon infection. The overall infection rate, severe/critical infection rate, and mortality rate were 2.74 (95% CI: 2.73-2.74) per 100 individuals, 6.34 (95% CI: 6.02-6.66) per 100,000 individuals and 2.42 (95% CI: 2.23-2.62) per 100,000 individuals, respectively. The severe/critical infection rate and mortality rate increased with age, noted in individuals aged 80 years or older. The overall fatality ratio and risk of developing severe/critical disease upon infection were 0.09% (95% CI: 0.09-0.10%) and 0.27% (95% CI: 0.24-0.29%), respectively. Having received at least one vaccine dose led to a 10-fold reduction in the risk of death for infected individuals aged 80 years or older. Under the repeated population-based screenings and strict intervention policies implemented in Shanghai, our results found a lower disease burden and mortality of the outbreak compared to other settings and countries, showing the impact of the successful outbreak containment in Shanghai. The estimated low clinical severity of this Omicron BA.2 epidemic in Shanghai highlight the key contribution of vaccination and availability of hospital beds to reduce the risk of death.


Subject(s)
COVID-19 , Humans , Aged, 80 and over , SARS-CoV-2 , China/epidemiology , Cost of Illness , Disease Outbreaks
2.
Lancet Reg Health West Pac ; 29: 100592, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2007928

ABSTRACT

Background: In early March 2022, a major outbreak of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant spread rapidly throughout Shanghai, China. Here we aimed to provide a description of the epidemiological characteristics and spatiotemporal transmission dynamics of the Omicron outbreak under the population-based screening and lockdown policies implemented in Shanghai. Methods: We extracted individual information on SARS-CoV-2 infections reported between January 1 and May 31, 2022, and on the timeline of the adopted non-pharmaceutical interventions. The epidemic was divided into three phases: i) sporadic infections (January 1-February 28), ii) local transmission (March 1-March 31), and iii) city-wide lockdown (April 1 to May 31). We described the epidemic spread during these three phases and the subdistrict-level spatiotemporal distribution of the infections. To evaluate the impact on the transmission of SARS-CoV-2 of the adopted targeted interventions in Phase 2 and city-wide lockdown in Phase 3, we estimated the dynamics of the net reproduction number (Rt ). Findings: A surge in imported infections in Phase 1 triggered cryptic local transmission of the Omicron variant in early March, resulting in the largest outbreak in mainland China since the original wave. A total of 626,000 SARS-CoV-2 infections were reported in 99.5% (215/216) of the subdistricts of Shanghai until the end of May. The spatial distribution of the infections was highly heterogeneous, with 37% of the subdistricts accounting for 80% of all infections. A clear trend from the city center towards adjacent suburban and rural areas was observed, with a progressive slowdown of the epidemic spread (from 463 to 244 meters/day) prior to the citywide lockdown. During Phase 2, Rt remained well above 1 despite the implementation of multiple targeted interventions. The citywide lockdown imposed on April 1 led to a marked decrease in transmission, bringing Rt below the epidemic threshold in the entire city on April 14 and ultimately leading to containment of the outbreak. Interpretation: Our results highlight the risk of widespread outbreaks in mainland China, particularly under the heightened pressure of imported infections. The targeted interventions adopted in March 2022 were not capable of halting transmission, and the implementation of a strict, prolonged city-wide lockdown was needed to successfully contain the outbreak, highlighting the challenges for containing Omicron outbreaks. Funding: Key Program of the National Natural Science Foundation of China (82130093); Shanghai Rising-Star Program (22QA1402300).

3.
Nat Med ; 28(7): 1468-1475, 2022 07.
Article in English | MEDLINE | ID: covidwho-1830085

ABSTRACT

Having adopted a dynamic zero-COVID strategy to respond to SARS-CoV-2 variants with higher transmissibility since August 2021, China is now considering whether, and for how long, this policy can remain in place. The debate has thus shifted towards the identification of mitigation strategies for minimizing disruption to the healthcare system in the case of a nationwide epidemic. To this aim, we developed an age-structured stochastic compartmental susceptible-latent-infectious-removed-susceptible model of SARS-CoV-2 transmission calibrated on the initial growth phase for the 2022 Omicron outbreak in Shanghai, to project COVID-19 burden (that is, number of cases, patients requiring hospitalization and intensive care, and deaths) under hypothetical mitigation scenarios. The model also considers age-specific vaccine coverage data, vaccine efficacy against different clinical endpoints, waning of immunity, different antiviral therapies and nonpharmaceutical interventions. We find that the level of immunity induced by the March 2022 vaccination campaign would be insufficient to prevent an Omicron wave that would result in exceeding critical care capacity with a projected intensive care unit peak demand of 15.6 times the existing capacity and causing approximately 1.55 million deaths. However, we also estimate that protecting vulnerable individuals by ensuring accessibility to vaccines and antiviral therapies, and maintaining implementation of nonpharmaceutical interventions could be sufficient to prevent overwhelming the healthcare system, suggesting that these factors should be points of emphasis in future mitigation policies.


Subject(s)
COVID-19 , SARS-CoV-2 , Antiviral Agents , COVID-19/epidemiology , China/epidemiology , Humans
4.
BMC Med ; 20(1): 130, 2022 04 04.
Article in English | MEDLINE | ID: covidwho-1770537

ABSTRACT

BACKGROUND: Hundreds of millions of doses of coronavirus disease 2019 (COVID-19) vaccines have been administered globally, but progress on vaccination varies considerably between countries. We aimed to provide an overall picture of COVID-19 vaccination campaigns, including policy, coverage, and demand of COVID-19 vaccines. METHODS: We conducted a descriptive study of vaccination policy and doses administered data obtained from multiple public sources as of 8 February 2022. We used these data to develop coverage indicators and explore associations of vaccine coverage with socioeconomic and healthcare-related factors. We estimated vaccine demand as numbers of doses required to complete vaccination of countries' target populations according to their national immunization program policies. RESULTS: Messenger RNA and adenovirus vectored vaccines were the most commonly used COVID-19 vaccines in high-income countries, while adenovirus vectored vaccines were the most widely used vaccines worldwide (180 countries). One hundred ninety-two countries have authorized vaccines for the general public, with 40.1% (77/192) targeting individuals over 12 years and 32.3% (62/192) targeting those ≥ 5 years. Forty-eight and 151 countries have started additional-dose and booster-dose vaccination programs, respectively. Globally, there have been 162.1 doses administered per 100 individuals in target populations, with marked inter-region and inter-country heterogeneity. Completed vaccination series coverage ranged from 0.1% to more than 95.0% of country target populations, and numbers of doses administered per 100 individuals in target populations ranged from 0.2 to 308.6. Doses administered per 100 individuals in whole populations correlated with healthcare access and quality index (R2 = 0.59), socio-demographic index (R2 = 0.52), and gross domestic product per capita (R2 = 0.61). At least 6.4 billion doses will be required to complete interim vaccination programs-3.3 billion for primary immunization and 3.1 billion for additional/booster programs. Globally, 0.53 and 0.74 doses per individual in target populations are needed for primary immunization and additional/booster dose programs, respectively. CONCLUSIONS: There is wide country-level disparity and inequity in COVID-19 vaccines rollout, suggesting large gaps in immunity, especially in low-income countries.


Subject(s)
COVID-19 Vaccines , COVID-19 , COVID-19/epidemiology , COVID-19/prevention & control , Humans , Immunization Programs , Policy , Vaccination Coverage
5.
Nat Genet ; 54(4): 499-507, 2022 04.
Article in English | MEDLINE | ID: covidwho-1764190

ABSTRACT

Genomic surveillance has shaped our understanding of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants. We performed a global landscape analysis on SARS-CoV-2 genomic surveillance and genomic data using a collection of country-specific data. Here, we characterize increasing circulation of the Alpha variant in early 2021, subsequently replaced by the Delta variant around May 2021. SARS-CoV-2 genomic surveillance and sequencing availability varied markedly across countries, with 45 countries performing a high level of routine genomic surveillance and 96 countries with a high availability of SARS-CoV-2 sequencing. We also observed a marked heterogeneity of sequencing percentage, sequencing technologies, turnaround time and completeness of released metadata across regions and income groups. A total of 37% of countries with explicit reporting on variants shared less than half of their sequences of variants of concern (VOCs) in public repositories. Our findings indicate an urgent need to increase timely and full sharing of sequences, the standardization of metadata files and support for countries with limited sequencing and bioinformatics capacity.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , COVID-19/genetics , Genomics , Humans , Information Dissemination , SARS-CoV-2/genetics
6.
Clin Infect Dis ; 74(4): 734-742, 2022 03 01.
Article in English | MEDLINE | ID: covidwho-1707909

ABSTRACT

Recently emerged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants may pose a threat to immunity. A systematic landscape of neutralizing antibodies against emerging variants is needed. We systematically searched for studies that evaluated neutralizing antibody titers induced by previous infection or vaccination against SARS-CoV-2 variants and collected individual data. We identified 106 studies meeting the eligibility criteria. Lineage B.1.351 (beta), P.1 (gamma) and B.1.617.2 (delta) significantly escaped natural infection-mediated neutralization, with an average of 4.1-fold (95% confidence interval [CI]: 3.6-4.7-fold), 1.8-fold (1.4-2.4-fold), and 3.2-fold (2.4-4.1-fold) reduction in live virus neutralization assay, while neutralizing titers against B.1.1.7 (alpha) decreased slightly (1.4-fold [95% CI: 1.2-1.6-fold]). Serum from vaccinees also led to significant reductions in neutralization of B.1.351 across different platforms, with an average of 7.1-fold (95% CI: 5.5-9.0-fold) for nonreplicating vector platform, 4.1-fold (3.7-4.4-fold) for messenger RNA platform, and 2.5-fold (1.7-2.9-fold) for protein subunit platform. Neutralizing antibody levels induced by messenger RNA vaccines against SARS-CoV-2 variants were similar to, or higher, than that derived from naturally infected individuals.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19 Vaccines/immunology , COVID-19 , SARS-CoV-2 , COVID-19/immunology , COVID-19/prevention & control , Humans , Spike Glycoprotein, Coronavirus/genetics , Vaccination
7.
Lancet Glob Health ; 9(5): e598-e609, 2021 05.
Article in English | MEDLINE | ID: covidwho-1683792

ABSTRACT

BACKGROUND: A rapidly increasing number of serological surveys for antibodies to SARS-CoV-2 have been reported worldwide. We aimed to synthesise, combine, and assess this large corpus of data. METHODS: In this systematic review and meta-analysis, we searched PubMed, Embase, Web of Science, and five preprint servers for articles published in English between Dec 1, 2019, and Dec 22, 2020. Studies evaluating SARS-CoV-2 seroprevalence in humans after the first identified case in the area were included. Studies that only reported serological responses among patients with COVID-19, those using known infection status samples, or any animal experiments were all excluded. All data used for analysis were extracted from included papers. Study quality was assessed using a standardised scale. We estimated age-specific, sex-specific, and race-specific seroprevalence by WHO regions and subpopulations with different levels of exposures, and the ratio of serology-identified infections to virologically confirmed cases. This study is registered with PROSPERO, CRD42020198253. FINDINGS: 16 506 studies were identified in the initial search, 2523 were assessed for eligibility after removal of duplicates and inappropriate titles and abstracts, and 404 serological studies (representing tests in 5 168 360 individuals) were included in the meta-analysis. In the 82 studies of higher quality, close contacts (18·0%, 95% CI 15·7-20·3) and high-risk health-care workers (17·1%, 9·9-24·4) had higher seroprevalence than did low-risk health-care workers (4·2%, 1·5-6·9) and the general population (8·0%, 6·8-9·2). The heterogeneity between included studies was high, with an overall I2 of 99·9% (p<0·0001). Seroprevalence varied greatly across WHO regions, with the lowest seroprevalence of general populations in the Western Pacific region (1·7%, 95% CI 0·0-5·0). The pooled infection-to-case ratio was similar between the region of the Americas (6·9, 95% CI 2·7-17·3) and the European region (8·4, 6·5-10·7), but higher in India (56·5, 28·5-112·0), the only country in the South-East Asia region with data. INTERPRETATION: Antibody-mediated herd immunity is far from being reached in most settings. Estimates of the ratio of serologically detected infections per virologically confirmed cases across WHO regions can help provide insights into the true proportion of the population infected from routine confirmation data. FUNDING: National Science Fund for Distinguished Young Scholars, Key Emergency Project of Shanghai Science and Technology Committee, Program of Shanghai Academic/Technology Research Leader, National Science and Technology Major project of China, the US National Institutes of Health. TRANSLATION: For the Chinese translation of the abstract see Supplementary Materials section.


Subject(s)
COVID-19 Serological Testing , COVID-19/diagnosis , COVID-19/epidemiology , Humans , Seroepidemiologic Studies
SELECTION OF CITATIONS
SEARCH DETAIL